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Note 

The Dynamical Interactions of Cosmic Strings* 

Cosmic strings [l-2] are thin, topologically stable tubes of symmetric-phase false 
vacuum that may have formed during a cosmological phase transition. Loops of 
cosmic string could have played an important role in the formation of large-scale 
structure in the universe. In the early universe these loops would exert a gravita- 
tional attraction on nearby matter, leading to density fluctuations that would 
evolve into galaxies and clusters of galaxies. An important property of cosmic 
strings is that for most purposes they have no inherent length scale (the width of 
a cosmic string is on the order of 10-29cm). Thus one expects that an equal 
number of loops of all sizes would be formed, leading to a scale invariant spectrum 
of density fluctuations. This in turn leads to a scale invariant distribution of 
galaxies and clusters of galaxies (as measured by the galaxy-galaxy correlation 
function), which matches observation [3 J. It is also encouraging that the 
amplitudes of the density fluctuations produced by string loops give realistic galaxy 
formation when the string tension (which is the characteristic energy scale of the 
string) is on the order of the symmetry-breaking scale in Grand Unified Theories 
(GUTS). It is difficult to imagine how scale invariant density fluctuations of the 
proper magnitude could have been produced in the early universe without cosmic 
strings. The fact that cosmic strings play an important role in a realistic model of 
galaxy formation is one of the main reasons for current interest in these objects. 

The cosmic string scenario of galaxy formation depends crucially on the forma- 
tion of loops of string. When strings are formed at the phase transition it appears 
that only 20% of the total string length will be in the form of loops [4], with the 
remainder in the form of infinitely long strings. In order to form additional loops 
from infinite strings it is necessary that when two strings cross they intercommute 
(that is, trade ends). In fact, if cosmic strings do not intercommute then the idea 
of their appearance in the early universe is in big theoretical trouble, for the 
following reason. Cosmic string loops oscillate and lose energy via gravitational 
radiation, so oscillating loops shrink and eventually disappear. This would explain 
why strings are not seen today. But infinite strings do not decay and, since the 
energy density of infinite strings scales roughly like non-relativistic matter, a 
network of non-intercommuting strings would quickly come to dominate the energy 
density of the universe, which of course is not observed. Thus loop formation is not 
just a useful feature for galaxy formation, it is required for cosmic strings to have 
existed at all. 

* Poster presented at the Particle Astrophysics Workshop at the Lawrence Berkeley Laboratory, 
Berkeley, California, December 8-10, 1988. 
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How strings behave when they cross depends upon their microscopic structure, 
so determining whether or not strings intercommute is not easy. The string is a 
topological defect described by a complicated system of non-linear differential equa- 
tions describing a Yang-Mills gauge field coupled to a symmetry breaking Higgs 
field. Because these equations cannot be solved analytically we are performing a 
numerical simulation of the collisions of cosmic strings [S-6]. The early indications 
are encouraging-it appears that cosmic strings do indeed intercommute, although 
there are several distinct processes responsible for this. But even if strings do inter- 
commute the details of the mechanism(s) involved may have an important influence 
on the distribution of loops. If strings only intercommute at certain crossing angles 
or at low collision velocities this could destroy the scale invariant distribution of 
loops. 

Our computational techniques are described in detail in Ref. [6], so we present 
here only a brief overview. The strings we consider are vortex lines in the Abelian 
Higgs model, which is described by the action: 

Here q(x) is a complex scalar field, A,(x) is the U(1) gauge potential, 
F,,=c~,A,(x)-cY,A,(x) is the field strength, and V,,cp=a,cp -ieA,cp(x) is the 
gauge-covariant derivative of q(x). The Higgs potenial for the cp field is minimized 
by IqI = (r # 0, so the vacuum of the system is degenerate and consists of the set of 
states where q(x) = oeieo for any fixed 8,. Because the vacuum is non-simply con- 
nected it is possible to create topological defects (called “vortices”) which cannot be 
deformed into the vacuum by expending any finite amount of energy. In the vortex 
configuration the cp field “winds” around the central maximum of the Higgs poten- 
tial like cp(r, (3) z (T exp(in 0). Although the phase of cp is not constant a suitable 
gauge potential can be chosen such that p(x) is couariuntly constant far from the 
vortex. Continuity of q(x) requires both that q(x) vanish at the center of the vortex 
and that n, the “winding number,” be an integer. Away from the central part of the 
vortex the scalar field is locally equivalent to the vacuum, but globally there is an 
integral twist in the phase of q(x). In three dimensions the vortex extends in the 
third dimension to form a line-like topological defect. This is the cosmic string. 

In addition to modeling cosmic strings, vortices in the Abelian Higgs model also 
represent tubes of magnetic flux (“Abrikosov vortices”) trapped in a super- 
conducting material in the Ginzburg-Landau theory [7-S]. In this case, however, 
the flux tubes are always aligned vertically with the external magnetic field, so the 
problem is effectively two dimensional. The general nature of the interactions 
between static vortices is already known [9]. When the scalar field coupling 
constant 1 is below the critical value i = 2 the vortices attract each other, which 
corresponds to a Type I superconductor. When the coupling constant is above the 
critical value the vortices repel, which corresponds to a Type II superconductor. At 
the critical value the interaction energy of two isolated vortices is zero, which 
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suggested that in a collision critically coupled vortices might behave like solitons 
and pass right through each other. As we will show later we have found that this 
is not the case: critically coupled vortices interact non-trivially (they scatter at 90” 
in a head-on collision) and are therefore not solitons. Applied to cosmic strings this 
means that nearly parallel cosmic strings will intercommute. We will explain why 
below. 

To simulate the system in a computer requires a discretization of the continuum 
of degrees of freedom, and since we are dealing with a gauge theory we have used 
techniques from lattice gauge field theory [lo]. The points of space are replaced by 
the vertices x of a cubic lattice with lattice spacing a. The scalar field q(x) and its 
conjugate momentum X(X) are represented by the variables cpX and 7tX, which live 
on the sites of the lattice, while the gauge field A,(x) and its conjugate momentum 
(the electric field) are represented by the variables 13; and Ei, which live on the 
links of the lattice. The virtue of using the lattice gauge field theory formalism is 
that unlike other discretization procedures it preserves the local gauge symmetry of 
the system. We begin the simulation with initial data describing two isolated vortices 
(or strings) approaching each other from a distance. This initial configuration is 
obtained by boosting the continuum field configuration of a stationary vortex. Once 
the initial configuration has been created it is propagated forward in time numeri- 
cally using the equations of motion. For greater numerical stability we have used 
a “leapfrog” algorithm. The proper treatment of the boundary conditions is 
important in this kind of simulation. We have implemented both free and periodic 
boundary conditions (periodic up to a gauge transformation) and have specifically 
avoided any sort of “driven” boundary conditions, because they would not allow us 
to simulate a closed system with a conserved total energy. Further details of our 
methods are given in Ref. [6]. 

Figure 1 shows the collision of two critically coupled vortices in two dimensions, 
which represent parallel cosmic strings. We plot the total energy density as a func- 
tion of position. Two isolated vortices approach each other in the x direction, 
collide, and form (briefly) a double wound vortex. Then two isolated vortices 
reemerge, but instead of passing through each other they have scattered at 90”. This 
shows that critically coupled vortices are not solitons. 

After we performed this simulation we learned that it is possible to predict 
analytically the 90” scattering of critically coupled vortices in the limit of very 
slowly moving vortices [ll]. Our simulation shows that the 90” scattering also 
takes place at higher velocities, and we have found the same behavior for non- 
critical values of the coupling constant. This non-trivial scattering is therefore 
apparently a generic feature of the interactions of vortices in the Abelian Higgs 
model. 

The fact that vortices in two dimensions scatter at 90” implies that nearly parallel 
strings will intercommute. To see this consider Fig. 2, where two nearly parallel 
strings are approaching each other, and we have imagined two perpendicular planes 
intersecting along the line between the strings. The vertical plane bisects the angle 
between the crossing strings. In the horizontal plane the collision of the strings is 
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the same as the two-dimensional problem, and the vortices will scatter at 90”. Then 
the only question is which halves of the strings go off with which vortices in this 
plane. It is easy to see that the energy of the system is less when two string ends 
on the same side of the vertical plane join together, which means that the strings 
intercommute. 

We have also simulated the collision of a vortex with an anti-vortex, which 
represents two perfectly anti-parallel strings. As expected we find that the vortex 
and anti-vortex annihilate. This means that nearly anti-parallel strings will also 
intercommute. To see this imagine one of the strings in Fig. 2 turned around. When 
the strings collide the vortex/anti-vortex pair in the horizontal plane annihilate, so 
the strings break across this plane. The strings must therefore join across the 
vertical plane with the ends of the other string, and thus they intercommute. 

It is not clear whether we can use these arguments for strings crossing at large 
angles, although we note that even when the strings cross perpendicularly they 
represent vortex/vortex scattering in the horizontal plane and vortex/anti-vortex 
scattering in the vertical plane, which should lead to intercommutation. To test this 
we have run a full three-dimensional simulation of two strings colliding per- 
pendicular to each other. This is shown in Fig. 3, where the density of the distribu- 
tion of points corresponds to the local energy density. It is easy to see that in the 
initial conditions the strings are isolated lines of high energy density. The strings 

FIG. 2. Demonstration that 90” scattering of vortices leads to intercommutation of nearly parallel 
strings (see text): (a) before scatttering; (b) after scattering. 
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move toward each other but do not interact until they are almost touching each 
other. When they are very close the sections of the strings nearest to each other can 
be seen to bulge out toward the other string, even though the coupling constant is 
at the critical value. Finally, it can be seen that the strings do indeed intercommute. 

We have also observed that when a vortex and an anti-vortex collide with 
sufficient energy (/3 > 0.9~) they annihilate, but then a vortex/anti-vortex pair is 
re-created. What is even more interesting is that the vortex and anti-vortex go out 
in the direction in which the original vortex and anti-vortex came in-as if they 
have been scattered directly backwards (and not as if they had passed through each 
other). For nearly anti-parallel strings we still expect the strings will intercommute, 
because the original vortex/anti-vortex pair annihilate, but the subsequent produc- 
tion of another vortex/anti-vortex pair may be an indication of the formation of a 
small loop of string from the interaction. We are investigating this possibility 
further. 
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